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ABSTRACT 

In the given paper we report the declination of the critical temperature, density, 

viscosity and susceptibility of the one-component near-critical liquid in the small 

volumes of bar and cylinder geometry. Geometrical factor K which sets the degree of 

the spatial limitation defined by K=q/Rco, were the q is a characteristic size of a system. 

New values of critical parameters were defined by the maximum of the correlation 

length. Our results suggest that the growth behavior of correlation length should remain 

only along the axis associated with the present geometry, i.e. in spatially unlimited 

direction, moreover not at the critical temperature of bulk liquid, but at the new one. 

Reduced geometry of a system leads to decreasing of the critical parameters like the 

critical temperature and density while characteristic size of a system becomes smaller. 

In contrast to a spatially infinite system for which the singular part of the 

viscosity demonstrates a "weak" anomalous growth at the bulk critical temperature, the 

maximum value of the viscosity in a finite-size liquid at the bulk criticality turns out to 

be finite and dependent on the characteristic size of a system as η~qx, where x=0.06 is 

the universal exponent. 

The conducted research let us to make the conclusion that reducing of the 

volume's size leads to decreasing of the susceptibility after the decreasing of the 

correlation length. However, its anomalous growth manifests at the new critical 

temperature which is the same one, as it was to be expected, which is calculated for the 

present geometrical conditions of spatial limitation of a system. 

 

KEY WORDS: correlation length, critical temperature, cylinder, exponents, finite size, 

viscosity. 
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1. INTRODUCTION 

Phase transitions and critical phenomena in finite-size systems have enough 

many specific particularities in contrast with similar phenomena in unlimited systems. 

Exactly for spatially limited systems exist an absence of the long-range nature of 

correlations between order parameter fluctuations along direction of spatial 

insufficiency, shift of critical singularities, interesting peculiarities of critical light 

opalescence. The direct consequences of system’s spatial limitation are declination of 

the critical parameters (critical temperature Tc, density ρc, concentrations, etc.), critical 

exponents and some other important characteristics as, for example, viscosity of being 

under investigating small volume of liquid.  

Anomalies, which are observe under the second-order phase transition and 

critical phenomena in space unlimited systems, greatly change its nature in those cases 

when a matter becomes limited in one or two dimensions. For systems, which are space 

limited in all three dimensions and which have distinctive single-line sizes smaller or 

comparable with maximal attainable value of correlation length, have to expect (and this 

is confirmed by many calculations) disappearances of critical anomalies.  

Let us now use the results of correlation properties analyses for finite size 

cylindrical system [1] in order to examine the location shift of critical maximum of 

correlation length of density fluctuations. We will consider being near to the critical 

condition one-component liquid, which filled in cylindrical sample, which has radius a 

and extends infinitely along the axes, i.e. 0<x,y≤a, -∞<z<∞. So we have one infinite 

direction along the axis of the cylinder, which makes the condition of thermodynamic 

limit satisfied and we can investigate critical behavior such kind of system directly. This 

set of a problem let us to avoid inconveniences as with Monte Carlo simulation which is 
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always in really finite system and have required extrapolation of obtained results to 

infinite volume [2] using widely accepted methods like finite-size scaling theory [3,4] 

and Binder's methods [5,6] in order to obtain critical characteristics.  

2.1. SHIFT OF CRITICAL TEMPERATURE 

For sufficiently close vicinity of critical isochore a new critical temperature 

Tc(K) , can be determined as under which must be observe anomalous growth of the 

correlation length component (Rc)z along the cylinder axis. Correlation length Rc in 

spatially limited system of cylindrical geometry appears dependent not only on 

thermodynamic variables (temperature, density and etc.), but also on the geometrical 

factor K, having the value of molecular layers number, which is possible to arrange 

along the cylinder radius. In contrast to spatially unlimited system in a cylindrical 

sample of radius a the longitudinal component of correlation length (Rc)z in bulk 

criticality have a finite value and is determined by expression [1] 

(Rc)z=Rco⋅K⋅(K2⋅τ2ν+ψ1
2)-1/2  for τ>0  and 

(Rc)z=Rco⋅K⋅(ψ1
2-K2⋅τ2ν)-1/2  for τ<0     (1) 

where Rco is the amplitude of correlation length, K=a/Rco - the geometrical factor, 

temperature variable τ=(T-Tc)/Tc, ν is the critical exponent of correlation length. In 

general case of the boundary condition of first kind for pair correlation function 

G2(a,z)=F(z) the naught ψ1 is the solution of following transcendent equation at τ>0: 

J0(ψ1)⋅e-1-F((Rco
-2⋅τ2ν+ψ1

2⋅a-2)-1/2)=0      (2) 

where J0(u) - cylindrical first kind's Bessel function of zero order. The expression for 

function F(z) will depend on particular statements of a problem.  

In accordance with criterion of maximum in the correlation length and using the 

Eq. (1) we have for the region τ<0: 
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ψ1
2⋅Κ−2-τ2ν=τ∗2ν        (3) 

where τ∗=(T-Tc
∗(K))/Tc

*(K) - the temperature variable for spatially limited system. It is 

necessary to notice that the used above defining condition (3) of critical temperature 

mean physically, that at the achievement of the new critical temperature Tc
*(K) of a 

spatially limited liquid in the sample of cylindrical geometry might exist anomalous 

growth of the longitudinal component of correlation length (1) along the cylinder axis. 

From Eq. (3) we can get the following formula for the critical temperature of liquid in 

the small volume with cylindrical geometry: 

Tc
*(K)=Tc⋅[1+(ψ1/K)1/ν]−1       (4) 

From Eq. (4) naturally follows that under transferring to the spatially unlimited system 

when the radius of cylinder aspire to infinity (a→∞) accompanied by geometrical factor 

(K→∞), the new critical temperature Tc
*(K) became equal to the bulk critical 

temperature Tc, i.e. the shift will be absent. Results of calculation of the new critical 

temperature are in a good agreement with [7,8] where size-dependent shift of the 

"effective critical temperature" were defined by the maximum in the specific heat from 

scaling arguments. 

The analysis of Eq. (4) shows that the shift of critical temperature of cylindrical 

sample Tc
*(K) from critical temperature Tc of volumetric phase may be highly 

considerable. For example, in the case of zero boundary condition under Tc=300 K , 

geometric factor K=100 and mean-field value of exponent ν=0.5 difference of critical 

temperature is ∆Tc=Tc-Tc
*(K)=0.173°K. It correspond to the shift of critical point on 

∆τ=6.4⋅10-5 lower then bulk location. 
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From standpoints of existing theories, in which was conduct evaluation of shift 

of critical temperature in spatially limited systems, Eq. (4) being in agreement with 

results of papers [9-11] and exactly for value 

(Tc(∞)-Tc(n))/Tc(∞)=b⋅n−λ       (5) 

where n - a number of atomic layers and b is coefficient. In papers of Binder and 

Hoenberg [9], Domb [10], Fisher and Barber [11] was shown that exponent λ=1/ν. 

However, Eq. (5) does not agreed with initial results of work Fisher and Ferdinand [12], 

where λ=1. 

It is necessary to notice that dependency of shift of critical temperature ∆Tc on 

L∼n with the critical exponent Θ=1/ν possibly to confirm with using of scaling 

hypotheses for finite-size systems [13]. Let assume that for the unlimited system 

(V=Ld→∞, d - space dimensionality) phase transition occurs at temperature T=Tc(∞). 

For limited system with characteristic size L phase transition turns out to be expanded, 

and it is described by the vicinity 

∆Tvic.∼L−ΘT         (6) 

where ΘT - certain critical index. The center of phase transition area, more exactly - 

corresponding temperature Tc(L), turns out to be shifted on value 

Tc(∞)-Tc(L)∼L−λT        (7) 

where λT - one more critical index which defining particularities of critical behaviour of 

finite-size systems. Using sufficiently easy scaling considerations it is possible to find 

numerical values of critical indexes ΘT , λT. All distinctive critical singularities are 

bound, as is well known, with the correlation length ξ of order parameter fluctuations, 

which for unlimited systems is described by the formula: 

ξ=τ−ν⋅ξ1(h/τβδ)=h−ν/βδ⋅ξ2(τ/h1/βδ)      (8) 
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Here ν, β, δ - critical exponents, h - an external field is associated to the order 

parameter, but ξ1(x) and ξ2(y) - scale functions, having following asymptotics: 

ξ1(x→0)=Rco ξ2(y→0)=Rco 

ξ1(x→∞)∼x−ν/βδ ξ2(y→0)∼y−ν                                        (9) 

On this basis, as well as on the background of considerations of spatial 

dimensionality let us assume value of the characteristic size of a system approximately 

equal to the correlation length ξ (L≈ξ). Then for the system, which is under the zero 

field h=0 (it is the reality for the liquid in vicinity of the critical isochore |ρ−ρc|<<τβ or 

for magnetic in "weak" magnetic field H<<τβ), get ξ=Rc⋅τ−ν, τ∼ξ−1/ν, that gives us 

∆Tvic.∼τ∼ξ−1/ν ,  [Tc(∞)-Tc(L)] ∼τ∼ξ−1/ν     (10) 

Comparing Eq. (6),(7) with Eq. (10), respectively, get for sought critical indexes 

following results: ΘT=1/ν, λT=1/ν. Similar results could be received for phase 

transitions induced by the external field h (it is real - for liquids under T=Tc(∞) in 

gravitation field, for magnetics in "strong" magnetic field H>>τβ). 

Also the important consequence from Eq. (4) is that fact, that it base in packed 

consensus with experimental data of Lutz with co-authors [14]. Really, shift of critical 

temperature are characterized by the dependency on the geometric factor K and, 

consequently, on the linear size L toward spatial insufficiency of a system. This 

dependence kept an inverse value of critical exponent ν. Other our result, which is 

confirm by the preceding theoretical and experimental works (references in [13]), is that 

that in the small volume in contrast with the critical temperature Tc of unlimited 

(volumetric) phases the shift of critical temperature ∆Tc(L) of liquid is in the direction 

of decreasing, i.e. Tc(L)<Tc . 
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We can bring else some additional theoretical considerations in favour of 

reducing of the critical temperature Tc(L) of space-limited systems with respect to its 

value Tc(∞). Well known (refer for instance to [15]), that condition of achievement of 

critical temperature in mean-field approximation is a performing a following 

expression: 

N⋅ϕcp/kB⋅Tc=1         (11) 

where N - number of connections (couple interactions) , and ϕcp - energy of couple 

interaction. Obviously, that as a result of spatial restriction of system (for instance, 

when system turning to the plane-parallel sample by the thickness L, which contains 

several monolayers) number of connections N became smaller effectively. Then from 

the condition (11) immediately follows a decreasing of critical temperature Tc(L) for the 

matter in the small volume. 

In the thermodynamic limit first-order phase transitions are characterized by δ-

function singularities in the second derivatives of the free energy at the transition point. 

However, in finite-size systems δ-function singularities are rounded and the effective 

transition point is shifted. These behaviors at the first-order transitions in finite-size 

systems are qualitatively similar to the finite-size effects at second-order transitions. In 

[16] were presented results for the Ising model in an external magnetic field, which 

exhibits a first-order phase transition below the bulk critical temperature . In the theory 

of Fisher and Berker [17], finite size scaling at the first-order transition is treated 

identically to scaling at a second-order transition. 

2.2. SHIFT OF CRITICAL DENSITY 

Using the similar way as above for temperature we can conduct consideration of 

the changing of a new critical density ρc
∗(K) in spatially limited system of cylindrical 
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geometry in contrast with the value of critical density ρc for unlimited volumetric phase. 

The only difference is connected with changing of temperature dependence of 

correlation length Rc∼τ−ν on the corresponding density dependence. Employed scaling-

low equation of state [18] ∆ρ=Bp⋅(-τ)β, where ∆ρ=(ρ-ρc)/ρc - deflections of density ρ of 

liquid from critical value ρc, Bp - is a proportionality constant and β is a critical 

exponent, we can write Rc∼∆ρ−ν/β. Then in vicinity of a critical isotherm, where ∆ρ>>τβ, 

for single-component liquid new value of critical density became equal: 

ρc
*(K)=ρc⋅[1+(ψ1/K)2/(δ−1)]−1       (12) 

for the constant boundary condition. From Eq. (12) naturally follows that under 

transferring to the spatially unlimited system (K→∞), the ρc
*(K)→ρc and the shift of 

density is absent. The analysis of Eq. (12) shows that the shift of critical density of 

cylindrical sample ρc
*(K) from critical density ρc volumetric phase can turn out to be 

highly significant. So, in the case of zero border condition under ρc=300 kg⋅m−3 (such 

value is typical for some hydrocarbons), geometric factor K=1000 and mean-field 

values of exponents ν=0.5 and β=0.5 [2/(δ-1)=β/ν] the gap of critical density is ρc-

ρc
*(K)=0.72 kg⋅m−3. 

In [19] from the Monte Carlo calculations for fluid in a porous material is 

obtained that the vapor-liquid coexistence region appears at lower temperatures than for 

the bulk, also the condensed phase densities are lower than those in the bulk. There 

mentioned that primary conclusion from their work: the critical temperature is lower 

than that in the bulk. They noted that the simple mean-field theory can predict the 

suppression of the critical temperature and lowering of the critical density for such kind 

of systems. 
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2.4. CHANGE OF VISCOSITY 

Using the results is presented above we will investigate the change of viscosity 

η due to the spatial insufficiency. By combining of scaling relation for viscosity in the 

absence of shear [20] 

η=ηB⋅(Q0⋅Rc)x         (13) 

and Eq. (1) for the correlation length  for the case of zero boundary condition we can get 

an equation for viscosity η∗ of a spatially-limited liquid cylindrical system of radius a in 

the region τ<0, i.e. in the near-critical state in a form 

η*=ηB⋅A⋅Kx (µ1
2-K2⋅τ2ν)-x/2       (14) 

where ηB is a background viscosity, x=0.06 - critical exponent, µ1=2.4048 is first naught 

of J0 Bessel function and A=(Q0⋅Rc)x - system-dependent constant. As it possible to see 

from Eq. (14), the viscosity in spatially limited system of cylindrical geometry depends 

not only on thermodynamic variable, but also on the geometric factor K. In contrast 

from spatially unlimited system, for which viscosity increase under the critical 

temperature (T→Tc , τ→0) up to infinity in conformity with the formula [20,21] 

η/ηB∼τ−φ (φ=0.41 – is an exponent), in the cylindrical sample of radius a maximum 

value of viscosity for τ→0 appear finite and equal to 

η∗(τ=0)∼0.95⋅ax⋅ηB⋅Qx       (15) 

Limiting transition to the case of spatially unlimited system at K→∞ have to be 

realized. From the Eq. (14) it is visible, that this transition takes place, i.e. η*∼τ−x for 

K→∞. It is possible to make a conclusion that viscosity became smaller in course of 

reducing of size of the system following the reducing of correlation length. The Fig. 1 

illustrates temperature dependence of η* at K=300 and ν=0.5 for the cylindrical sample 
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Fig. 1. Temperature dependence of the dimensionless viscosity η∗(K)/(ηΒ ⋅A) for the 

cylindrical sample. Here assumed critical exponent ν =0.5, x=0.06 and 

geometrical factor K=300. 
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with zero boundary condition. Our calculation shows that anomalous growth of 

viscosity appeared not under bulk critical temperature T=Tc (τ=0), but, as it was to be 

expected, under the new critical temperature Tc
∗(K), which is the same one that had 

been determined from Eq. (4). This fact give us an opportunity to define new critical 

temperature by both ways - from maximum in correlation length or from maximum in 

viscosity. Results which are obtained for the viscosity allow us to study the specific 

features of the critical behavior of the width of the central line in spectra of the light 

critical opalescence in finite-size liquids. 

3. PROPERTIES OF LIQUID SYSTEM WITH GEOMETRY OF INFINITE BAR 

Very many details about the structure and work of the "molecular machine" in 

biological membranes – choline receptor now are known. Choline receptor consists of 

five subunits - gaps. The study of amino-acid sequences of these units has shown, that 

all of them have taken place in an outcome of updating of the same gene. Incorporating 

among themselves, these subunits derivate at centre the channel. This channel has an 

approximately square section with the party of quadrate 0,65 nm. It does not distinguish 

ions K+ and Na+, but does not pass anions. Length of the choline receptor in 5-6 times 

exceeds a thickness of a membrane which is 6-10 nm, so that fiber hardly dives from it 

out and inside of a cell. It gives a sense of reality for geometrical model which we will 

consider hereafter. 

The major problem of the statistical physics approach to the finite-size effects on 

phase transitions is the problem to find the pair correlation function and the 

corresponding correlation length of order parameter fluctuations. It may be mentioned 

that pair correlation function does in fact permit determination of most equilibrium 

properties of a simple liquid. Because of this the concrete purposes of conducted study 
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are calculation and analyses of its behaviors for systems with scalar order parameters 

like classical liquids in the sample of rectangular section ( x∈[-a;a], y∈[-b;b] and 

z∈[0;∞[ ). The task of searching pair correlation function G2 in this case is reduced to 

the finding nonsingular solution of simple boundary problem for the inversed Helmholtz 

operator L̂ =∆−k2  associated with the Ornstein-Zernike equation [22] (∆ - is Laplasian 

and k=Rc
-1 is the parameter bounded to the correlation length of the infinite system), 

which is written for rectangular coordinates. The judicious choice of a boundary 

condition is important. Let is find the pair correlation function for a sample with 

rectangular geometry in case of a boundary condition of an constant kind, given on a 

surface of the bar. We shall write down a boundary condition in the form  G2x=±a=A,  

G2y=±b=B  and  G2z→∞=0. Using the standard method of division of variables and 

omitting insignificant details of the corresponding calculations, the following solution 

of the given boundary problem for the general case of rectangular section of the infinite 

bar is received: 

G2(x,y,z)= �
∞

=1,mn
[(-1)n(-1)m⋅AB⋅Cos(πnx/a)⋅Cos(πmy/b)] × 

 ×[(1/z)⋅exp{-z⋅ 2222222 2 ba/)ba(πk nm +⋅+ }]    (16) 

Those terms of the sum, which dumping slower than others, will define the value 

of the correlation length. So they will give the main contribution in the G2. It is a reason 

to take into account only first member of the row with m,n=1. 

For the particular case of the square section of the bar (x,y∈[-a;a]) with 

boundary condition G2x,y=±a=A  and G2z→∞=0 we have the main term of G2: 

G2(x,y,z)=A2⋅Cos(πx/a)⋅ Cos(πy/a)⋅(1/z)⋅exp{-z⋅ 22 2 a/π2k + }  (17) 
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The solution for zero boundary condition G2x,y=±a=0 is 

G2(x,y,z)=�
∞

=1n
[Dn⋅Cos(πnx/a+π/2) ⋅Cos(πny/a+π/2)]⋅[(1/z)⋅exp{-z⋅ 222 2 a/π2k n+ }] (18) 

The pair correlation function G2 varies with an exponential decay with respect to 

z an thus following the same way like for case with cylinder, we will defined a z-

component of correlation length (Rc)z from the criteria G2(z)=e⋅G2(z+(Rc)z) and get 

(Rc)z=a⋅(1+ln0.5)/( a2k2+2π2)1/2  for τ>0, and 

(Rc)z=a⋅(1+ln0.5)/( 2π2-a2k2)1/2  for τ<0    (19) 

For such system, as well as for cylinder, the shift of critical parameters will take 

place. The new critical temperature Tc
*(a) will depend on size a and could be defined 

from the condition of anomalous growth behavior of (Rc)z. Thus we found  

 Tc
*(a)=Tc⋅[1+( 2⋅π/koa)1/ν]-1       (20) 

Here ko=Rco
-1 - the inverted amplitude of correlation length and k=koτν . It had 

better to set the geometrical factor K=ko⋅a=a/Rco , which will characterize how mach 

times the cross-section’s size  bigger  then Rco. Also it is possible to consider the K as 

number of molecular layers. In order to simplify our formulae we rewrite them using K: 

 (Rc(K))z= RcoK(1+ln0.5)/( 2π2-K2τ2ν)1/2    (21) and 

 Tc
*(K)=Tc⋅[1+( 2⋅π/K)1/ν]-1      (22) 

All limit transitions to the infinite system (a, K→∞) are satisfied. On Fig. 2 the 

dependence of correlation length (Rc(K))z for finite-size bar system and Rc(∞) for bulk 

system on temperature variable τ is presented at K=100. The Fig. 3 is for dependence of 

the new critical temperature Tc
*(K) on geometrical factor K. Here assumed critical 

temperature for bulk system Tc=300°K and the critical exponent ν=0.5 . 
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Fig. 2. Dependence of the dimensionless correlation length (Rc(K))z/Rc0 for finite-size 

bar system and Rc(∞)/Rc0 for bulk system on temperature variable τ=(T-Tc)/Tc 

at geometrical factor K=100. 
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Fig. 3. Dependence of the new critical temperature Tc
*(K) on geometrical factor K. 

Here assumed critical temperature for bulk system Tc=300°K and the critical 

exponent ν=0.5 . 
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Previous results let us to make the conclusion that reducing of the volume's size 

leads after the decreasing of the correlation length to decreasing of the susceptibility χ 

which is equivalent of isothermal compressibility βт for one-component liquid. It could 

be explained in terms of well known scaling formula βт∼Rc
2-ϕ where ϕ=0 for Ornstein-

Zernike approximation. For obvious reason of system’s spatial anisotropy we will take 

into account only longitudinal z-component of correlation length which highly exceed 

the value of component in the plane of bar section. Dependence of βт on temperature 

variable τ and geometrical factor K could be describe by the equation: 

βт∼(τγ+2π2/K2)−1  for τ>0, and 

βт∼(2π2/K2-τγ)−1  for τ<0      (23) 

and presented on Fig. 4. Here γ is the critical exponent. The anomalous growth of βт 

manifests at the new critical temperature which is the same one, as it was to be 

expected, which is calculated for the present geometrical conditions of spatial limitation 

of a system. 

4. CONCLUSION 

This method and results we have presented here are general and its quantities are 

approximate. Of course current estimates of critical parameters, exponents far from 

quality of highest resolution numerical methods, but it gave us right direction of shifts 

and here enough room to make these results more precise by using more realistic 

approximation and by taking into account more factors which may play a significant 

role for critical phenomena in the finite-size systems. 

K.Ch. would like to express big gratitude to late Prof. K.Hamano and to thank 

professors K.Kubota and T.Yamamoto for numerous useful discussions and fruitful 

ideas.
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Fig. 4. Dependence of the dimensionless isothermal compressibility βт for finite-size 

bar system on temperature variable τ=(T-Tc)/Tc at geometrical factor K=100. 

Straight line represents temperature dependence of isothermal compressibility 

for bulk system. Here assumed the critical exponent γ=1.25 . 
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